position inhabituelle mais la deuxième (vasopressine II) occupe la position de l'arginine-vasopressine des mammifères. Les tubes 170–200, contenant de la vasopressine I et les tubes 240-300, contenant la vasopressine II sont rassemblés, puis après élimination de l'acétate d'ammonium, les substances sont hydrolysées par HCl 6 N.

La vasopressine II possède la composition en acides aminés de l'arginine-vasopressine. La vasopressine I possède une composition voisine, mais le résidu de phénylalanine est remplacé par un résidu d'isoleucine. Cette nouvelle vasopressine possède une composition identique à celle d'un peptide synthétique, l'arginine-vasotocine, synthétisé par Katsoyannis et Du Vigneaud⁵; comme ce dernier peptide, la nouvelle vasopressine possède une activité ocytocique secondaire relativement élevée si on la compare à l'activité vasopressique.

Cependant, une comparaison soigneuse des deux produits est nécessaire avant de conclure à une identité. Quoiqu'il en soit, la neurophysine du poulet, à la différence de celle des mammifères, contient 3 hormones neurohypophysaires de composition voisine.

Laboratoire de Chimie Biologique, Faculté des Sciences, Marseille (France)

JACQUELINE CHAUVET Marie-Thérèse Lenci ROGER ACHER

- 1 R. ACHER, J. CHAUVET ET G. OLIVRY, Biochim. Biophys. Acta, 22 (1956) 421.
- ² R. Acher, A. Light et V. du Vigneaud, J. Biol. Chem., 233 (1958) 116.
- ³ J. Chauvet, M.-T. Lenci et R. Acher, *Biochim. Biophys. Acta*, 38 (1960) 266. ⁴ R. Acher, J. Chauvet et M.-T. Lenci, *Biochim. Biophys. Acta*, 38 (1960) 344. ⁵ P. G. Katsoyannis et V. du Vigneaud, *J. Biol. Chem.*, 233 (1958) 1352.

Reçu le 24 décembre 1959

Biochim. Biophys. Acta, 38 (1960) 571-573

The effect of paramagnetic substances on the conversion of some pyrimidines by ultraviolet radiation

In previous papers¹⁻⁶ we have reported upon the effects of ultraviolet radiation (2537 Å) on some components of nucleic acids in aqueous solution. A reversible hydration of uracil was known from the work of Sinsheimer and Hastings?. Moreover, long-continued irradiation leads to an irreversible destruction of these compounds. These reactions could be followed by the alterations of the ultraviolet spectra. We have found that besides these two photochemical phenomena, the pyrimidines show another reaction which is probably the most important. It appears that irradiation of aqueous solutions of the compounds, without any time lag, also brings about partial conversion into low-absorbing substances. The probable connection between this photochemical conversion and the lethal and mutagenic effects of ultraviolet radiation on micro-organisms has been suggested1.

This reaction, which we have called "the first irreversible reaction" is remarkable because the extent to which it occurs appears limited to a specific percentage of the amount of the pyrimidine originally present (uracil, 6%; thymine, 2%; orotic acid, 13 %; cytosine, 3 %).

We have recently found a relationship between the amount of conversion and the oxygen concentration. Irradiation of an aq. solution of uracil saturated with O₂ brings about a 3 % conversion, whereas expulsion of this gas, by bubbling through N_2 or H_2 , raises this percentage to 9–10 %. This oxygen effect is still more pronounced in the case of orotic acid (in O_2 -saturated solution, 7 %; after expulsion of O_2 , 35–37 %).

The occurrence of an equilibrium between orotic acid and its irradiation product could be demonstrated by the following experiments. If orotic acid is first irradiated for a short time in O_2 -free solution the absorbancy decreases about 35 %; saturating the solution with O_2 and repeating the irradiation causes a sharp rise of the absorbancy until a maximum is reached equal to about 7 % conversion of the orotic acid⁵. From these and other experiments⁵ we must conclude that the so called "first irreversible reaction" is by no means irreversible.

This remarkable effect of O_2 was supposed by us to be due to its paramagnetism⁴. If this assumption is correct it might be expected that all paramagnetic compounds will exert an effect on "the first irreversible reaction" similar to that of O_2 . This could be confirmed. Without any exception all paramagnetic ions tested (Cu^{++} , Co^{++} , Ni^{++} , Cr^{+++} , Mn^{++} and Fe^{++}) have shown the same effect on the equilibrium of "the first irreversible reaction" as O_2 . The experiments were performed in acid milieu to prevent salt formation. A solution of known concentration of orotic acid in 0.2 N HCl was saturated with N_2 and irradiated for 15 min. After addition of the metal-salt solution to a final concentration of $5 \cdot 10^{-3} M$, the irradiation was repeated for 5 min. The paramagnetic ions brought about a partial recovery of the orotic acid, which had disappeared as a result of the first irradiation (orotic acid, 35-37% decrease in absorbancy to 10-17% decrease). Diamagnetic ions on the other hand (K^+ , Al^{+++} , Ca^{++} , Mg^{++} , Cd^{++} and Zn^{++}) were completely inert, the percentage converted in the first irradiation (35-37%) remaining unchanged.

A quantitative relation between the concentration of a paramagnetic substance and the percentage of reversion was studied with Ni⁺⁺. Concentrations of $5 \cdot 10^{-3}$, $2.5 \cdot 10^{-3}$ and 10^{-3} M caused a rise in the absorbancy of the solutions corresponding to a reversion of the low-absorbing product from 35 % to 10 %, 16 % and 24 %, respectively.

Experiments similar to those described with orotic acid were also performed with uracil and generally the same results were obtained. However, no recovery of uracil could be found if the time between the two irradiations was too long. It is assumed that the reaction product of uracil is rather unstable. Some arguments can be given for this supposition.

The experiments with orotic acid strongly support our assumption that the rapid, seemingly irreversible, reactions lead to an equilibrium condition appropriate to the conditions of the ultraviolet irradiation. As soon as the irradiation is stopped this equilibrium is frozen. Changing of the conditions, e.g. by adding paramagnetic substances, results in a shift of the equilibrium under renewed irradiation. A reaction on a triplet level was supposed in one of our previous papers⁵. Singlet-triplet transitions are facilitated by paramagnetic molecules or ions. This will result in a lower concentration of the pyrimidine in the active form (triplet state) and consequently in a smaller amount of the irradiation product.

The work described in this paper was sponsored by the U.S. Army.

Biochemical Laboratory of the Technological University of Delft, Delft (The Netherlands) R. Beukers W. Berends

```
<sup>1</sup> A. Rörsch, R. Beukers, J. Ylstra and W. Berends, Rec. trav. chim., 77 (1958) 423.

<sup>2</sup> R. Beukers, J. Ylstra and W. Berends, Rec. trav. chim., 77 (1958) 729.

<sup>3</sup> R. Beukers, J. Ylstra and W. Berends, Rec. trav. chim., 78 (1959) 247.

<sup>4</sup> R. Beukers, J. Ylstra and W. Berends, Rec. trav. chim., 78 (1959) 879.

<sup>5</sup> R. Beukers, J. Ylstra and W. Berends, Rec. trav. chim., 78 (1959) 883.

<sup>6</sup> R. Beukers, J. Ylstra and W. Berends, Rec. trav. chim., 79 (1960) 101.

<sup>7</sup> R. L. Sinsheimer and R. Hastings, Science, 110 (1949) 525.

<sup>8</sup> C. Reid, Excited States in Chemistry and Biology, Academic Press, New York, 1957.
```

Received February 5th, 1960

Biochim. Biophys. Acta, 38 (1960) 573-575

AUTHOR INDEX

Acher, R., see Chauvet, J	266	CANTONI, G. L., see MUDD, S. H	164
ACHER, R., J. CHAUVET AND MT. LENCI		CANTONI, G. L., see SINGER, M. F	568
(Isolement de l'ocytocine du poulet) .	344	CARNAHAN, J. E., L. E. MORTENSON, H. F.	
ACHER, R., see CHAUVET, J	571	Mower and J. E. Castle	
Anderson, N. G. and R. E. Canning		(Nitrogen fixation in cell-free extracts	
(A method for plotting ultracentrifuge		of C. pasteurianum)	188
diagrams for polydisperse systems)	367	CASTLE, J. E., see CARNAHAN, J. E	188
AUDRAIN, L. AND H. CLAUSER	•	CERLETTI, P. AND E. BUCCI	
(Mécanisme de l'inactivation de l'ocy-		(Adenylate kinase of mammalian ery-	
tocine par le tissu utérin)	494	throcytes)	45
BAILEY, K. AND J. C. RÜEGG		CHAMBERS, R. W., see KESSLER, D	
(Tropomyosins of lamellibranch muscle		CHAPPELL, J. B. AND G. D. GREVILLE	V 1.
with special reference to P. maximus)	239	(Mitochondrial swelling and electron	
BENERECETTI, A.S., see Rossi-Fanelli, A.	38o	transport. I. Swelling supported by	
Bennett, R. E., see Sih, C. J	378	ferricyanide)	483
BERENDS, W. AND R. BEUKERS		CHAUVET, J., MT. LENCI AND R. ACHER	
(Effect of paramagnetic substances on		(L'ocytocine et la vasopressine du	
the conversion of some pyrimidines by		mouton: Reconstitution d'un com-	
u.vradiation)	573	plexe hormonal actif)	266
BERLINER, D. L., H. E. SWIM AND T. F.		CHAUVET, J., see Acher, R	
Dougherty		CHAUVET, J., MT. LENCI ET R. ACHER	•
(Metabolism of [4-14C]corticosterone		(Présence de deux vasopressines dans	
by fibroblasts, strain U12-79)	184	la neurohypophyse du poulet)	57I
BERNHEIM, F.	-	CHEN, C., see KOIDE, S. S	
(Assimilation and metabolism of		CHEN, P. T., see RAPPOPORT, D. A	156
guanidine by a strain of P. aeruginosa)	173	CITRI, N. AND N. GARBER	-
Besch, P. K., see McCormack, S	293	(Effect of substrate on urea-modified	
Beukers, R., see Berends, W	573	penicillinase)	50
Blombäck, B., H. Boström and A.		Clauser, H., see Audrain, L	494
Vestermark		CLOSON, J., see ROCHE, J	325
([35S]sulphate incorporation in fibrino-		COHN, P., see BUTLER, J. A. V	386
peptide B from rabbit fibrinogen)	502	Connor Johnson, B., see Gurnani, S	187
Boström, H., see Blombäck, B	502	Crawford, R. B., see Kochen, J	553
BOUCEK, R. J., see ELDEN, H. R	205	Creasey, W. A.	
Bourgeois, S., J. M. Wiame and H.		(Changes in the sodium and potassium	
Lelouchier-Dagnelie		contents of cell nuclei after irradiation)	181
(Le "rétrocontrôle" de synthèses d'en-		CSALLANY, A. S., see DRAPER, H. H	161
zymes par des acides aminés au cours		DE Marco, C., see Rossi-Fanelli, A	380
de la croissance de P. morganii)	136	DORFMAN, R. I., see GOLDSTEIN, M	190
Brown, M. E., see Russell, D. W	382	Dorfman, A., see Ludowieg, J	212
Bucci, E., see Cerletti, P	45	Dougherty, T. F., see Berliner, D. L.	184
BUTLER, J. A. V., P. COHN AND P. SIMSON		DRAPER, H. H. AND A. S. CSALLANY	
(The presence of basic proteins in		(Observations on reactivation of iso-	
microsomes)	386	octane-extracted DPNH-cytochrome c	
CANNING, R. E., see Anderson, N. G	367	reductase with $D-[^{14}C]-a$ -tocopherol).	161